联系我们CONTACT US
- 中国商品条形码中心
- 联系人:王经理
- 电话:17732605906(微信同步)
福建手机条码查询方法
产品条形码办理是由一组规则排列的条、空以及对应的字符组成的标记,“条”指对光线反射率较低的部分,“空”指对光线反射率较高的部分,这些条和空组成的数据表达一定的信息,并能够用特定的设备识读,转换成与计算机兼容的二进制和十进制信息。通常对于每一种物品,它的编码是唯一的,对于普通的一维条码来说,还要通过数据库建立条码与商品信息的对应关系,当条码的数据传到计算机上时,由计算机上的应用程序对数据进行操作和处理。
因此,普通的一维条码在使用过程中仅作为识别信息,它的意义是通过在计算机系统的数据库中提取相应的信息而实现的。是一种可靠性高、输入快速、准确性高、成本低、应用面广的资料自动收集技术。
世界上约有225种以上的一维条码,每种一维条码都有自己的一套编码规格,规定每个字母(可能是文字或数字或文数字)是由几个线条(Bar)及几个空白(Space)组成,以及字母的排列。一般较流行的一维条码有39码、EAN码、UPC码、128码,以及专门用於书刊管理的ISBN、ISSN等。
从UPC以后,为满足不同的应用需求,陆陆续续发展出各种不同的条码标准和规格,时至今日,条码已成为商业自动化不可缺少的基本条件。条码可分为一维条码(OneDimensionalBarcode,1D)和二维码(TwoDimensionalCode,2D)两大类,目前在商品上的应用仍以一维条码为主,故一维条码又被称为商品条码,二维码则是另一种渐受重视的条码,其功能较一维条码强,应用范围更加广泛。
条码的码制码制即指条码条和空的排列规则,常用的一维码的码制包括:EAN码、39码、交叉25码、UPC码、128码、93码,及Codabar(库德巴码)等。
不同的码制有它们各自的应用领域:EAN码:是国际通用的符号体系,是一种长度固定、无含意的条码,所表达的信息全部为数字,主要应用于商品标识39码和128码:为目前国内企业内部自定义码制,可以根据需要确定条码的长度和信息,它编码的信息可以是数字,也可以包含字母,主要应用于工业生产线领域、图书管理等93码:是一种类似于39码的条码,它的密度较高,能够替代39码25码:只要应用于包装、运输以及国际航空系统的机票顺序编号等Codabar码:应用于血库、图书馆、包裹等的跟踪管理条码符号的组成一个完整的条码的组成次序依次为:静区(前)、起始符、数据符、(中间分割符,主要用于EAN码)、(校验符)、终止符、静区(后)。静区,指条码左右两端外侧与空的反射率相同的限定区域,它能使阅读器进入准备阅读的状态,当两个条码相距距离较近时,静区则有助于对它们加以区分,静区的宽度通常应不小于6mm(或10倍模块宽度)。
起始/终止符,指位于条码开始和结束的若干条与空,标志条码的开始和结束,同时提供了码制识别信息和阅读方向的信息。数据符,位于条码中间的条、空结构,它包含条码所表达的特定信息。构成条码的基本单位是模块,模块是指条码中最窄的条或空,模块的宽度通常以mm或mil(千分之一英寸)为单位。构成条码的一个条或空称为一个单元,一个单元包含的模块数是由编码方式决定的,有些码制中,如EAN码,所有单元由一个或多个模块组成;而另一些码制,如39码中,所有单元只有两种宽度,即宽单元和窄单元,其中的窄单元即为一个模块。
条码的几个参数
密度(Density):条码的密度指单位长度的条码所表示的字符个数。对于一种码制而言,密度主要由模块的尺寸决定,模块尺寸越小,密度越大,所以密度值通常以模块尺寸的值来表示(如5mil)。通常7.5mil以下的条码称为高密度条码,15mil以上的条码称为低密度条码,条码密度越高,要求条码识读设备的性能(如分辨率)也越高。高密度的条码通常用于标识小的物体,如精密电子元件,低密度条码一般应用于远距离阅读的场合,如仓库管理。宽窄比:对于只有两种宽度单元的码制,宽单元与窄单元的比值称为宽窄比,一般为2-3左右(常用的有2:1,3:1)。宽窄比较大时,阅读设备更容易分辨宽单元和窄单元,因此比较容易阅读。对比度(PCS):条码符号的光学指标,PSC值越大则条码的光学特性越好。PCS=(RL-RD)/RL×100%(RL:条的反射率RD:空的反射率)。
一个完整的物流单元标签包括三个标签区段,且从上到下的顺序通常为:承运商区段、客户区段和供应商区段。每个区段均采用两种基本形式表示一类信息的组合。标签文本内容位于标签区段的上方,产品条形码办理符号位于标签区段的下方。其中,SSCC条码符号应位于标签的最下端。
SSCC是所有物流单元标签的必备项,其他信息如果需要应配合应用标识符AI使用并符合附加信息代码结构的规定。
承运商区段通常包含在装货时就已确定的信息,如到货地邮政编码、托运代码、承运商特定路线和装卸信息。
客户区段通常包含供应商在订货和定单处理时就已确定的信息。主要包括到货地点、购货订单代码、客户特定路线和货物的装卸信息。
供应商区段通常包含包装时供应商已确定的信息。SSCC是物流单元应有的唯一的标识代码。
客户和承运商所需要的产品属性信息,如产品变体、生产日期、包装日期和有效期。批号(组号)、系列号等也可以在此区段表示。
用户可以根据需要选择105mmx148mm(A6规格)或148mmx210mm(A5规格)两种尺寸。当只有SSCC或者SSCC和其他少量数据时,可选择105mmx148mm。
技术要求
物流单元标签上的条码符号应符合下列和GB/T15425-2014商品条码128条码标准的相关规定。
X尺寸最小为0.495mm,最大为1.016mm。在指定范围内选择的X尺寸越大,扫描可靠性越高。
条码符号的高度应大于等于32mm。
条码符号的条与空应垂直于物流单元的底面。在任何情况下,SSCC条码符号都应位于标签的最下端。
供人识读字符可以放在条码符号的上部或下部,包括应用标识符、数据内容、校验位,但不包括特殊符号字符或符号校验字符的表示。应用标识符应通过圆括号与数据内容区分开来。供人识读字符的高度不小于3mm,并且清晰易读,位于条码符号的下端。
条码的符号等级不得低于1.5/10/670,条码符号的检测和质量评价见GB/T18348-2008商品条码条码符号印制质量的检验标准的相关规定。
标签的文字与标记包括发货人、收货人名字和地址,公司的标志等。标签文本要清晰易读,并且字符高度不小于3mm。
人工识读的数据由数据名称和数据内容组成,内容与条码表示的单元数据串一致,数据内容字符高度应不小于7mm。
在自动识别技术中,条形码技术具有如下特点:
1.操作简单,容易上手。产品条形码办理符号制作容易,扫描操作简单易行。
2.输入迅速,信息采集速度快。普通计算机的键盘录入速度是200字符/分钟,而利用条码扫描录入信息的速度是键盘录入的20倍。
4.输入正确,可靠性高。键盘录入数据,误码率为三百分之一,利用光学字符识别技术,误码率约为万分之一,而采用条码扫描录入方式,误码率仅有百万分之一,首读率可达98%以上。
5.灵活、实用。条码符号作为一种识别手段可以单独使用,也可以和有关设备:条码打印机、条码扫描枪、采集器等条形码设备组成识别系统实现自动化识别,还可和其他控制设备联系起来实现整个系统的自动化管理。同时,在没有自动识别设备时,也可实现手工键盘输入。
6.自由度大。读取装置与条码标签相对位置的自由度要大得多。条码通常只在一维方向上表达信息,而同一条码上所表示的信息完全相同并且连续,这样即使是标签有部分缺欠,仍可以从正常部分输入正确的信息。
7.条码自动识别系统所涉及到的识别符号成本以及条码设备成本都非常低。特别是条码符号,即使是一次性使用,也不会带来多少附加成本,尤其是在大批量印刷的情况下。这一特点使得条码技术在某些应用领域有着无可比拟的优势。再者,条码符号识读设备的结构简单,成本低廉,操作容易,适用于众多的领域和工作场合。
8.可以进行非接触读取(条码扫描枪直接阅读),可以选择和用途相适应的读取装置(手持式/固定式/全方位扫描平台),可以根据环境、用途选择打印纸(耐热、耐药、耐水、防尘等)。
产品条形码办理诞生及发展历史过程
条码技术最早产生在风声鹤唳的二十年代,诞生于Westinghouse的实验室里。一位名叫JohnKermode性格古怪的发明家“异想天开”地想对邮政单据实现自动分检,那时候对电子技术应用方面的每一个设想都使人感到非常新奇。
他的想法是在信封上做条码标记,条码中的信息是收信人的地址,就象今天的邮政编码。为此Kermode发明了最早的条码标识,设计方案非常的简单(注:这种方法称为模块比较法),即一个“条”表示数字“1”,二个“条”表示数字“2”,以次类推。然后,他又发明了由基本的元件组成的条码识读设备:一个扫描器(能够发射光并接收反射光);一个测定反射信号条和空的方法,即边缘定位线圈;和使用测定结果的方法,即译码器。
Kermode的扫描器利用当时新发明的光电池来收集反射光。“空”反射回来的是强信号,“条”反射回来的是弱信号。与当今高速度的电子元气件应用不同的是,Kermode利用磁性线圈来测定“条”和“空”。就象一个小孩将电线与电池连接再绕在一颗钉子上来夹纸。Kermode用一个带铁芯的线圈在接收到“空”的信号的时候吸引一个开关,在接收到“条”的信号的时候,释放开关并接通电路。因此,最早的条码阅读器噪音很大。开关由一系列的继电器控制,“开”和“关”由打印在信封上“条”的数量决定。通过这种方法,条码符号直接对信件进行分检。
不久,Kermode的合作者DouglasYoung,在Kermode码的基础上作了些改进。Kermode码所包含的信息量相当的低,并且很难编出十个以上的不同代码。而Young码使用更少的条,但是利用条之间空的尺寸变化,就象今天的UPC条码符号使用四个不同的条空尺寸。新的条码符号可在同样大小的空间对一百个不同的地区进行编码,而Kermode码只能对十个不同的地区进行编码。
直到1949年的专利文献中才第一次有了NormWoodland和BernardSilver发明的全方位条码符号的记载,在这之前的专利文献中始终没有条码技术的记录,也没有投入实际应用的先例。NormWoodland和BemardSilver的想法是利用Kermode和YOung的垂直的“条”和“空”,并使之弯曲成环状,非常象射箭的靶子。这样扫描器通过扫描图形的中心,能够对条码符号解码,不管条码符号方向的朝向。
在利用这项专利技术对其进行不断改进的过程中,一位科幻小说作家Isaac-Azimov在他的“裸露的太阳”一书中讲述了使用信息编码的新方法实现自动识别的事例。那时人们觉得此书中的条码符号看上去象是一个方格子的棋盘,但是今天的条码专业人士马上会意识到这是一个二维矩阵条码符号。虽然此条码符号没有方向、定位和定时,但很显然它表示的是高信息密度的数字编码。
直到1970年IterfaceMechanisms公司开发出“二维码”之后,才有了价格适于销售的二维矩阵条码的打印和识读设备。那时二维矩阵条码用于报社排版过程的自动化。二维矩阵条码印在纸带上,由今天的一维CCD扫描器扫描识读。CCD发出的光照在纸带上,每个光电池对准纸带的不同区域。每个光电池根据纸带上印刷条码与否输出不同的图案,组合产生一个高密度信息图案。用这种方法可在相同大小的空间打印上一个单一的字符,作为早期Kermode码之中的一个单一的条。定时信息也包括在内,所以整个过程是合理的。当第一个系统进入市场后,包括打印和识读设备在内的全套设备大约要5000美元。
不久,随着LED(发光二极管)、微处理器和激光二极管的不断发展,迎来了新的标识符号(象征学)和其应用的大爆炸,人们称之为“条码工业”。今天很少能找到没有直接接触过即快又准的条码技术的公司或个人。由于在这一领域的技术进步与发展非常迅速,并且每天都有越来越多的应用领域被开发,用不了多久条码就会象灯泡和半导体收音机一样普及,将会使我们每一个人的生活都变得更加轻松和方便。
上一篇:辽宁包裹条码的基本规则
下一篇:山西饮料条码如何生成?
最新文章
- 浙江商品条形码查询指南[ 2024-12-23 ]
- 浙江商品条形码查询的实用技巧与注意事项[ 2024-12-23 ]
- 宁夏矿泉水条形码申请详解:步骤与要点[ 2024-12-23 ]
- 宁夏矿泉水条形码申请指南[ 2024-12-23 ]
- 福建省手机条形码管理办法的实施与影响[ 2024-12-23 ]
- 福建省手机条形码管理办法解析[ 2024-12-23 ]